
Using PostgreSQL to
develop biological

and academic databases

Peter St. Onge
Department of Economics, University of Toronto

Alexandr Ignachenko
Toronto General Hospital

Paul Osman
eval.ca

http://pete.seul.org/talks/

Overview

● Rationale
● Research ... The Final fronter! (Maybe)
● Functions
● Views
● Stored Procedures
● Rules and Triggers
● Materialized Views
● SQL Data Prep Scripts
● Future work
● Summary

PostgreSQL Conference 2006

Goal

● Place more data-handling logic inside
database

● Using strengths of modern RDBMS to
protect data: AAA / CIA / ACID

Authentication, Authorization, Accountability

Confidentiality, Integrity, Availability

Atomicity, Consistency, Isolation, Durability

PostgreSQL Conference 2006

Rationale

● Many research apps are LAMP-based
● Simple, functional, effective
● Web apps are relatively simple to write
● But database is often only a simplistic

persistance mechanism
● SQL is pretty standard
● So why is transition to LAPP stack

increasingly common in research?

PostgreSQL Conference 2006

Why Bother?

Research needs for data handling are as
varied as the individual projects:

● Different researchers, different needs
● Browse only vs. data entry
● Results entry vs. sample prep
● Status reports vs. prep list

PostgreSQL Conference 2006

Data paths...

● Access through web app
● Direct access to tables
● Scripts for pre- & post-processing
● Export to stats package (eg. R)
● Export via ODBC to reporting package
● Export via ODBC to desktop tools

(spreadsheet, etc)

These are not typical of conventional
web applications...

PostgreSQL Conference 2006

Is anything typical?

● Simplified overview of data paths

PostgreSQL Conference 2006

Still not simple...

PostgreSQL Conference 2006

FUNCTIONS

PostgreSQL Conference 2006

Synonyms

● Typical biological problem
● Mapping 'researcher-friendly' identifier

to 'database-friendly' identifier
● eg. Lake identifier, watershed identifier,

species identifier
● E. coli:

Blattner <-> Strain ID <-> Research ID

PostgreSQL Conference 2006

Synonyms

CREATE TABLE synonym (
 synonym_id SERIAL PRIMARY KEY,
 blattner VARCHAR,
 level INTEGER
);

0 = Blattner
1 = Common Synonym
2 = EC record

PostgreSQL Conference 2006

get_blattner()

CREATE FUNCTION get_blattner(TEXT) RETURNS TEXT AS ' DECLARE
 testgene ALIAS FOR $1;
 gene_rec RECORD;
 blattner_rec synonym.blattner%TYPE;
 BEGIN
 IF length(testgene) = 0
 THEN
 RETURN ''NULL'';
 ELSE
 SELECT INTO gene_rec *
 FROM synonym
 WHERE synonym = testgene;
 IF NOT FOUND
 THEN
 RETURN ''NULL'';
 ELSE
 SELECT INTO blattner_rec blattner
 FROM synonym
 WHERE synonym = testgene;
 IF NOT FOUND
 THEN
 RETURN NULL;
 ELSE
 RETURN blattner_rec;
 END IF;
 END IF;
 END IF;
 END;'
LANGUAGE 'plpgsql';
●

PostgreSQL Conference 2006

get_ec_number()

CREATE FUNCTION get_ec_number(TEXT) RETURNS TEXT
AS 'DECLARE
 testgene ALIAS FOR $1;
 gene_rec RECORD;
 ec_rec synonym.synonym%TYPE;
 BEGIN
 IF length(testgene) = 0
 THEN
 RETURN NULL;
 ELSE
 SELECT INTO gene_rec *
 FROM synonym
 WHERE blattner = testgene
 AND level = 2;

 IF NOT FOUND THEN RETURN ''NULL'';
 ELSE
 SELECT INTO ec_rec synonym
 FROM synonym
 WHERE blattner = testgene
 AND level = 2;
 IF NOT FOUND
 THEN
 RETURN NULL;
 ELSE
 RETURN ec_rec;
 END IF;
 END IF;
 END IF;
 END;'
LANGUAGE 'plpgsql';

● PostgreSQL Conference 2006

●

get_synonym()

CREATE FUNCTION get_synonym(TEXT) RETURNS TEXT
AS 'DECLARE
 blattner_rec ALIAS FOR $1;
 synonym_rec synonym.synonym%TYPE;
 BEGIN
 IF LENGTH(blattner) = 0
 THEN RETURN 'NULL";
 ELSE
 SELECT INTO synonym_rec *
 FROM synonym
 WHERE blattner = blattner_rec
 AND level = 1;
 IF NOT FOUND
 THEN
 RETURN 'NULL';
 ELSE
 RETURN synonym_rec;
 END IF;
 END IF;
 END;'
LANGUAGE 'plpgsql';

● PostgreSQL Conference 2006

Conversion
functions

● Another typical biological problem
● Formalizing typical conversions when

bringing disparate data together
● Ensure consistancy, auditability

SQL is good, but slow, so ...

C is the way to go!

PostgreSQL Conference 2006

Conversion
functions

#include <math.h>
#include "postgresql/server/postgres.h"

double *plt_convert_f_to_c(double *deg)
{
 double *ret = palloc(sizeof(double));

 *ret = (*deg + 32.0) * 5.0 / 9.0;
 return ret;
}

(Yeah, I know it's Version 0...)

PostgreSQL Conference 2006

Conversion
functions

#include <math.h>
#include "postgresql/server/postgres.h"

double *plt_compute_freshwaterdensity_temp(double *temp)
{
 double *ret = palloc(sizeof(double));
 /* yay CRC handbook */
 *ret = 999.83952 + 16.945176 * *temp
 - (7.9870401 / 1000 * pow(*temp, 2))
 - (46.170461 / 1000000 * pow(*temp, 3))
 - (105.56303 / 1000000000 * pow(*temp, 4))
 - (280.54273 / 1000000000000 * pow(*temp, 5)) /
 (1 + 16.87985 / 1000 * *temp);

 return ret;
} PostgreSQL Conference 2006

VIEWS

PostgreSQL Conference 2006

Using views...

PostgreSQL Conference 2006

As persisted queries, views can be used to:

Abstract complexity of non-obvious queries from users

Limit user access to data

Keep difficult SQL query logic in database, not in web
interface

Set up once, they keep updating...

Economics Grad
Admissions

PostgreSQL Conference 2006

Data sources:
● External data from School of Graduate Studies (SGS)
● Internal data from Grad Coordinators

Programs:
● M.A., Ph.D., & Non-degree – Dep't Grad Coordinator
● MFE – MFE Program Coordinator

Needs:
● Simple interface for data entry
● Able to integate data from both remote and local
● Present via common desktop tools
● Segregate data by grad coordinator
● Departmental and program-specific stats for applications

Economics Grad
Admissions

PostgreSQL Conference 2006

Data entry interface:
● Prospective student enters personal info via SGS web site
● Internal data from Grad Coordinators via web page

Backend information:
● Local database has SGS data updated via script (called by

cron)
● New data added, changes to data updated to database

Local interface:
● Desktop access to data by ODBC, by user authentication
● Linked data export to Access / Excel
● No local coding necessary! :)

Using views...

PostgreSQL Conference 2006

Perennial problem with complex views -

Accessing a view causes query to be executed; complex
queries can cause significant contention on database
server when query is hit often

View is good for simple data that changes often, but not
for complex data that requires frequent access.

Oh no! What can we do now...?!

STORED
PROCEDURES

PostgreSQL Conference 2006

NCBI Taxonomy Tree

PostgreSQL Conference 2006

National Center for Biotechnology Information – US NIH
Primary data store for many resources, including:

– PubMed
– Blast Dbs
– Taxonomy Data

“Taxonomy”
– is a hierarchical organization of species
– Kingdom, phylum, class, order, family, genus, species
– represented as node list for a graph
– Large dataset, very minor changes

NCBI Taxonomy Tree

PostgreSQL Conference 2006

Data description

● nodes – taxonomy nodes*
● names – species name (scientific, common names)
● divisions – broad classiciation of species
● gencode – genetic code info
● delnode – deleted nodes (for changes)
● merged – old & new id of nodes when merged
● citations – list of citations for particular nodes*

* Generally useful!

NCBI Taxonomy Tree

PostgreSQL Conference 2006

Database functions

● nodes – taxonomy_import_ncbi_nodes()
● names – taxonomy_import_ncbi_names()
● divisions – taxonomy_import_ncbi_divison()
● gencode – taxonomy_import_ncbi_gencode()
● delnode – taxonomy_import_ncbi_deleted()
● merged – taxonomy_import_ncbi_merged()
● citations – taxonomy_import_ncbi_citations()

– fairly quickly done (< 1 minute or so)

● Taxonomy tree - build_ncbi_taxonomy_tree()
– Sloooow (20+ minutes to generate tree!)

RULES &
TRIGGERS

PostgreSQL Conference 2006

Facilitating user
processing

PostgreSQL Conference 2006

Difficult to do everything via stored procedures
Sometimes best to externalize some data prep, esp for

specialized needs
Protect core data via group membership & perms on

namespaces / schema
Allow users to do their own processing!

BUT

How to keep intensive user scripts from running
unnecessarily, causing contention problems?

Facilitating user
processing

PostgreSQL Conference 2006

Core data tables have rule for UPDATE INSERT DELETE to
update 'tables' table

'Tables' table has rule to UPDATE 'scripts' table (set
BOOLEAN to TRUE)

User scripts query 'scripts' table via function ..

SELECT work_check(scriptname);

TRUE means one or more underlying tables have changed
and user script should run. Once this is done ...

SELECT work_done(script_name);

... will reset the BOOLEAN flag for the next set of changes.

Facilitating user
processing

PostgreSQL Conference 2006

Facilitating user
processing

PostgreSQL Conference 2006

Advantages
● Useful by any database-aware scripting language (Perl,

Python, Ruby, VB/VBA via ODBC, Bash/psql, R, Stata, etc)
● Ability to automate aspects of data maintenance (via cron)
● Play to strengths: RDBMS to manage / manipulate data,

stats package to do stats

Disadvantages
● Minor increase in script complexity
● Potential for redundancy in user scripts created by

different users
● VERY important to ensure proper privileges set up (eg.

read-only access to core data tables by user scripts)

Auditing & Accountability
(or 'things I learned the hard way')

PostgreSQL Conference 2006

Maintaining a core or project data pool can have problems...
● Errors, mistakes requiring corrections
● Unauthorized ('creative') data changes

Finding the source of irregularities is difficult after the fact.

Importance of keeping the data pool 'clean'

Data entry and 'corrections' should be tracked by individual

Steps in processing should similarly be tracked by individual

Auditing & Accountability
(or 'things I learned the hard way, cont.')

PostgreSQL Conference 2006

Each member should have their own database account
● Permissions to be given primarily by group membership
● 'Sharing' accounts is not appropriate and unnecessary
● Accounts are cheap!

Web interface to do pass through authentication (based on
db user / pass) – NOT stored in web form!

Changes to core data tables should be backed up into
parallel tables along with timestamp and CURRENT_USER
at change time; keep the backup tuples in a namespace
not accessible to 'normal mortals'

Review changes made to all tables daily via script called via
cron – identify issues before they become problems.

MATERIALIZED
VIEWS

PostgreSQL Conference 2006

Materialized Views

PostgreSQL Conference 2006

When is a view not a view?
When it's a table!

MV are tables re-created via stored procedure
in response to data changes

General approach:
 1) Create table (easy enough)
 2) Create procedure to (re)populate table
 3) Create trigger(s) to call procedure

PostgreSQL Conference 2006

CREATE FUNCTION mv_tracking_update() RETURNS "trigger"
 AS ' DECLARE
 BEGIN
 /* Clear out table */
 DELETE FROM results.mv_tracking;

 /* Now populate pendings */
 INSERT INTO results.mv_tracking
 SELECT <foo>
 FROM <bar>
 WHERE data.status_id <> ''P'';

 /* and add last 15 completed */
 INSERT INTO results.mv_tracking
 SELECT <foo>
 FROM <bar>
 WHERE data.status_id = ''C''
 ORDER BY last_update DESC
 LIMIT 15;
 RETURN NULL;
 END;'
 LANGUAGE plpgsql;

 2) Create procedure
to (re)populate table

PostgreSQL Conference 2006

CREATE TRIGGER t_mv_tracking_i
 AFTER INSERT ON data
 FOR EACH STATEMENT
 EXECUTE PROCEDURE
public.mv_tracking_update();

CREATE TRIGGER t_mv_tracking_u
 AFTER UPDATE ON data
 FOR EACH STATEMENT
 EXECUTE PROCEDURE
public.mv_tracking_update();

Same for delete ...

 3) Create trigger(s) to call procedure

Materialized Views

PostgreSQL Conference 2006

Why bother?

Overhead in table repopulation is comparable
to running query via view

Procedure only runs when change to data
occurs, so lower overhead for table queries

Processing done in 'computer' time, not 'user'
time

SQL DATA
PREP SCRIPTS

PostgreSQL Conference 2006

SQL Data Prep Scripts
(or 'more things I learned the hard way')

PostgreSQL Conference 2006

As the data is being collected, many research users want to
'play' with live data – ODBC + Desktop tools to the rescue!

BUT!

GUI data workup is often useful for exploratory data analysis
(EDA) but generally not repeatable (or amenable to
automation)

Spreadsheets get very complicated, very quickly with large
datasets, and difficult to audit post-priori (= BAD) – also 3
papers on numeric inaccuracies in Excel

Difficult to track errors from changes and unit magnitudes

SQL Data Prep Scripts
(or 'more things I learned the hard way, cont')

PostgreSQL Conference 2006

Write an SQL script!

SQL scripting is relatively simple (compared to most stats
packages)

SQL scripting is EASILY auditable (data manipulations via SQL
are very clear)

SQL scripts are EASILY commented – inclusion of description,
logic, revision history & amenable to CVS/SVN

Namespaces can be used to maintain multiple versions or
approaches of data work up (snapshots in time)

FUTURE
WORK

PostgreSQL Conference 2006

What's Next?

PostgreSQL Conference 2006

Some things we're looking at ...

Creation of compound UDTs, a 'profile' data type for
limnological research + supporting functions

Database-mediated distributed analysis system for
high-resolution time-series data

Kerberos-based authentication for student / staff /
faculty information system

SUMMARY

PostgreSQL Conference 2006

In Summary ...

PostgreSQL Conference 2006

In our experience,PostgreSQL's inherent flexibility,
extensibility and speed make it an excellent research
and academic database system

Views, Stored Procedures, Rules & Triggers, MVs all
offer tremendous opportunities for web and research
developers to maximize application capability while
minimizing nLOC required

'Don't be afraid of put logic in the DB rather than
everything in the web form'

THANKS!

PostgreSQL Conference 2006

To all the PostgreSQL developers for making this
possible!

Ger Cagney – RIS
Thomas Kislinger – MARS / UHN

Peter Dillon – OMEE / Trent University
Martyn Futter – OMEE / Laurentian University

Department of Economics, U of T
Genome Canada
NCE-SFN Aquatic Group
Colleagues from Emili Lab – U of T

